GigaBit broadband

Could it/will it/should it change the world, and if so, how?

William Lehr MIT wlehr@mit.edu

January 29-30, 2014 Austin, Texas

MIT Communications Futures Program

"Defining the roadmap for communications and its impact on adjacent industries."

Future vision: Pervasive, Cloud Computing, Big Data

GigaBit Access: future of Broadband

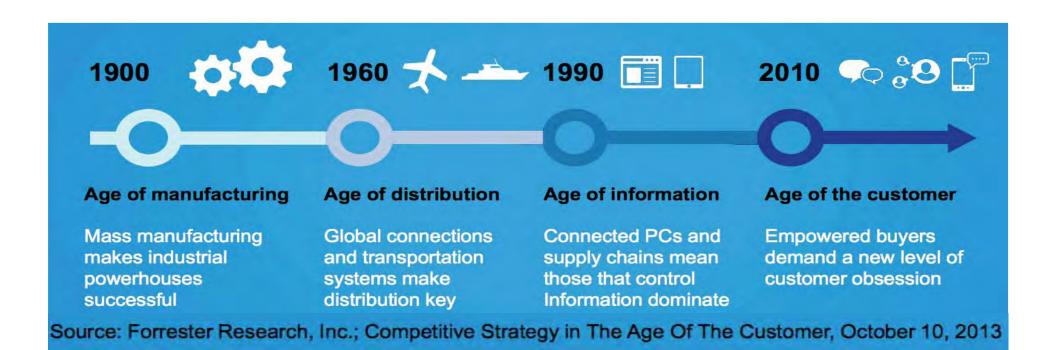
Video OTT

Big Data, Clouds

Summing Up

Vision of the Internet Future: Pervasive Computing

Features


Always on/Everywhere connected Smart (distributed) e.g., Internet of Things, CPUs in everything Wireless & Mobile

Capabilities

Adaptive, Dynamic, Context aware Real-time Personalized (customized)

[mplications

End-user empowerment Real-time decision-making Automated

Data Processing

Weeks
Batch
Megabytes
Punch Cards
Few People

Days Request/Reply Terabytes Human Many People

Real Time

Minutes
Automated
Exabytes
Event Driven
Beyond People

NATIONAL BROADBAND PLAN

CONNECTING AMERICA

March 2010

THE PLAN by ISSUES

Learn how the National Broadband Plan is shaping the future of issues that matter to Americans. Get key highlights in the plan about: Broadband is the great infrastructure challenge of the early 21st century.

- > ECONOMIC OPPORTUNITY
- > EDUCATION
- > HEALTH CARE
- > ENERGY AND THE ENVIRONMENT
- > GOVERNMENT PERFORMANCE
- > CIVIC ENGAGEMENT
- > PUBLIC SAFETY

(U.S. hardly unique. Most OECD countries have Digital Agendas with National BB Plans.)

Broadband Future: Clouds & GigB (100Mbps+ by 2020)

Pervasive computing vision

Always on/everywhere connected (wireless)

Mobility

Real-time decision-making

Dynamic scalability, reliability, just-in-time

Drivers: exponential traffic growth...

Faster, cheaper, smaller CPU, displays, storage, I/O

Internet of Things

Video, interactivity, richer multimedia, automated

Mobility: Anywhere/Everywhere/All time scales

Big Data: everything measurable/instrumented

Challenges for GigB access

Investment keeps pace with traffic

Faster devices, access, cores accelerate traffic. Positive feedback.

Mobility makes traffic more bursty, less predictable

Interactivity/mobility/personalized means capacity needs more symmetric

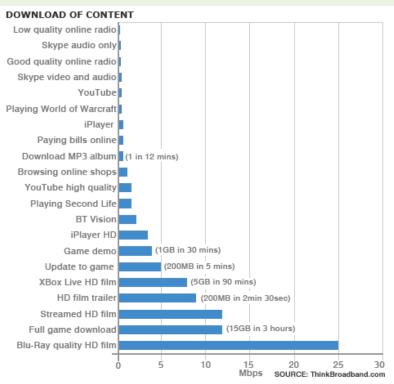
Rapid economic depreciation, long-lived, uncertain

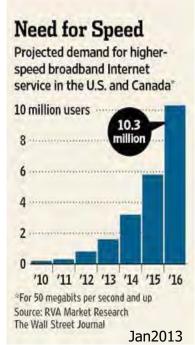
Technology/Market/Business/Regulatory Uncertainty. Timing.

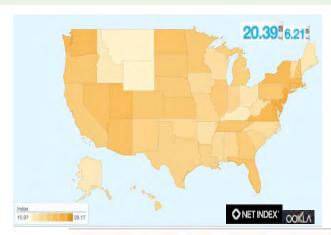
Interoperability & moving bottlenecks

Competition (Substitutes)

Value capture & Pricing (cost-recovery). Free-riding


(Clouds, Big Data confront the same....)





Do we need 1Gbps broadband? Timing.

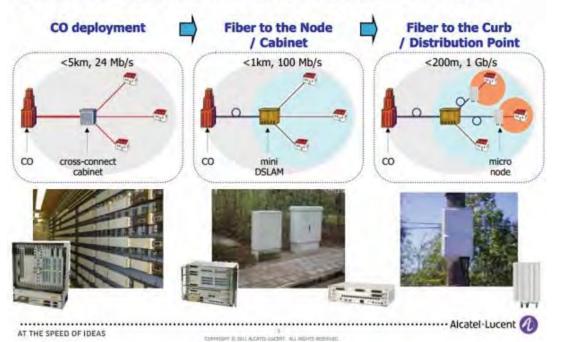
Country/Region	% Above 10 Mbps	QoQ Change	YoY Change
- Global	14%	13%	38%
1 South Korea	45%	-8.6%	-6.5%
2 Japan	43%	5.8%	18%
3 Switzerland	37%	21%	71%
4 Latvia	33%	13%	29%
5 Réunion	33%	35%	-
6 Hong Kong	32%	-1.9%	23%
7 Netherlands	31%	8.5%	66%
8 Czech Republic	27%	24%	88%
9 Belgium	25%	23%	80%
10 United States	24%	2,3%	43%

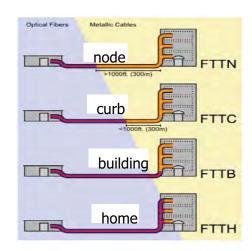
Multiple BB users per home

Faster better

Competition. No one wants yesterday's paper.

Mobile small cells ⇔ fixed/mobile integration ⇔ shared infrastructure


© Lehr, 2014 8



Fiber-to-the-X (FTTX)

- -- Gbps Broadband
- -- Mobile Backhaul

Reality gradual deployment of fiber deeper in network

BENEFITS

Capacity (QoS, options)
Future proof
Lower OPEX (?)
Natural monopoly (?)

RISKS

Penetration (revenue) v. Coverage (costs) Chicken-Egg timing Competition Regulatory uncertainty (Federal & local)

Video & OTT: where is the traffic driver taking us?

Value creation or redistribution? Better be about new value!

Revenue: \$/view for cable v. OTT? CDs v. Spotify?

Cost: Broadcast-over-RF v. unicast-over-IP?

Shared network cost recovery? A worsening challenge

Triple Play Bundle Pricing: Telephone/SMS & now TV?

Future of content? end-user generated in a mobile BB world

Entertainment: how much TV can we watch anyway? What device?

User-generated: YouTube/Mobile/Distributed/Personal

Rich Multimedia: interactivity/gaming/social media

Monitoring: cameras everywhere, machines can watch too

Network challenge? Capacity, capacity, capacity. & storage, coding

Traffic: more symmetric, unpredictable (bursty)

In-the-cloud replaces on-the-device, rent rather than own...

Rights management: who owns the meta data?

Big Data is a Demand Accelerator

Big data can generate significant financial value across sectors

US health care

- \$300 billion value per year
- ~0.7 percent annual productivity growth

Europe public sector administration

- €250 billion value per year
- ~0.5 percent annual productivity growth

Global personal location data

- \$100 billion+ revenue for service providers
- Up to \$700 billion value to end users

US retail

- 60+% increase in net margin possible
- 0.5–1.0 percent annual productivity growth

Manufacturing

- Up to 50 percent decrease in product development, assembly costs
- Up to 7 percent reduction in working capital

SOURCE: McKinsey Global Institute analysis

INSIGHT!

bigdata@csail taming the data deluge

Images Text Locations Measurements Videos. Web clickstreams Tweets Voice...

CAPTURE [Katabi, Balakrishnan..]

BIG UNDERSTANDING

[Torralba [Images], Barzilay [Language]..]

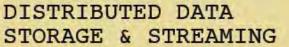
BIG MACHINE LEARNING

[Jaakkola, O'Reilly, Fisher..]

BIG ALGORITHMS

[Indyk, Ronitt, Edelman..]

SECURITY & PRIVAC [Zeldovich, Kaashoek, Clark..]


PRIVACY

MASS DATA

S

CALE

ANALYTICS

[Stonebraker, Madden..]

CLOUD PLATFORMS [Agarwal, Amarsinghe..]

VISUALIZATION & HCI

[Karger, Miller, Oliva, Keel...]

Finance Medical Science Energy Intelligence Education Retail Sports Entertainment Transportation Business Insurance...

Clouds: next big thing for network providers?

Value proposition: transport + distributed computing + storage

Just-in-time/anywhere on-demand resources

Resource pooling

Thin/thick clients, mobile/fixed, wired/wireless

Reliability: redundancy, diverse routing, security (?)

Energy efficiency & cost saving : scale economies, maintenance

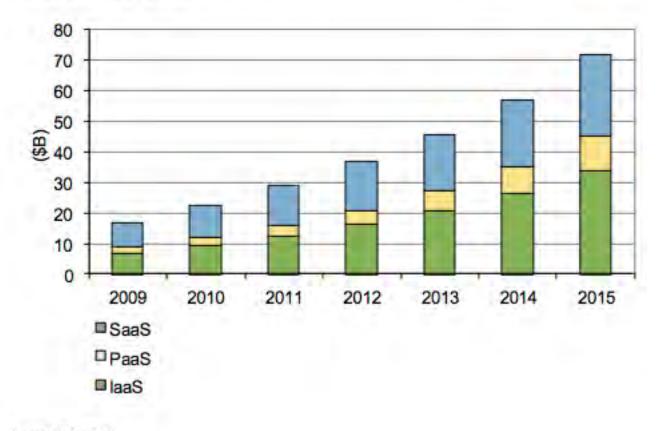
Clouds: who owns assets? Customer relationship? Application?

XaaS (X=I, P, S, ?): General purpose/specialized? Public/private?

Smart edges (Dumb pipes) v. Smart networks

Challenges: divide the pie!

Control ⇔ Interoperability


Shared resources ⇔ Cost recovery

Regulatory uncertainty: (telephony) PSTN → cloud computing utility

Cloud Services: \$28B (2011) → \$70.8B (2015)

SaaS (\$13B), PaaS (\$3B), IaaS (\$12B).... 26% CAGR

Worldwide Public IT Cloud Services Segmented by Primary Market, 2009-2015

Source: IDC, 2012

Summing up

Future IS Big Data, Cloud Computing, Gigabit Access

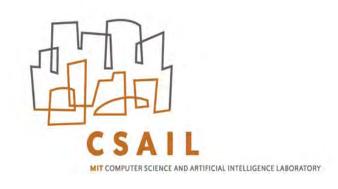
Lots of challenges

Multiple bottlenecks: risk or opportunity in eye of beholder

Competition: mix-and-match, silos and platforms

Uncertainty: technical, market, regulatory

Faster clockspeed: competitive advantage may be short lived

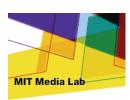

Video? yes but had better be user-generated & interactive

Traffic? Lots more, more symmetric, more bursty

Big Data? early stages (real-virtual world integration)

Clouds? yes, multiple clouds and uncertain who captures value

Thanks for your attention!


Questions: wlehr@mit.edu

Websites:

http://cfp.mit.edu/~wlehr

Our Vision at the Communications Futures Program (CFP) is to define the roadmap for communications and its impact on adjacent industries. CFP is a cross cutting partnership between academia and industry, with industrial partners from across the value chain.

Multidisciplinary: technology, business strategy/economics and policy

Cross Value Chain: across industry ... chips to boxes to services to apps, across functions... R&D to strategy to operations, industry to academia to policy

Open Communications: focus on destabilizing shifts of intelligence and control between network owners and end users

http://cfp.mit.edu

Questions...

- Gigabit Access: who needs it? For what?
- Backhaul transport: faster edges mean what for rest of network?
- Video OTT: how different?
- Big Data: apps beyond consumer research?
- Cloud computing: how does it change network requirements?
- Traffic symmetry: what does this mean? Capital investment?

GigaBit Networks

- Mobile: complement or substitute?
- Video: Hollywood redux or user-generated content?
- Cloud: whose cloud?
- Future Proofing: fiber is long-lived, lumpy, sunk investment

Implications for carrier assets

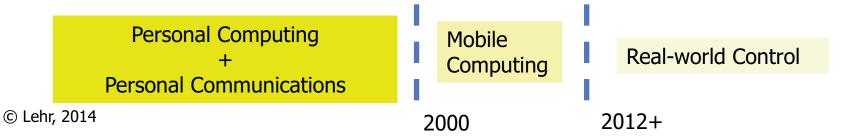
- Last-mile
- Spectrum
- Business models and opportunities

Vision of the Broadband Internet Future

Phase 1: 1950-1995

- Universal telephone service, computing everywhere (in business)
- > PCs on every desktop, LANs to tie them together

Phase 2: 1995-2000

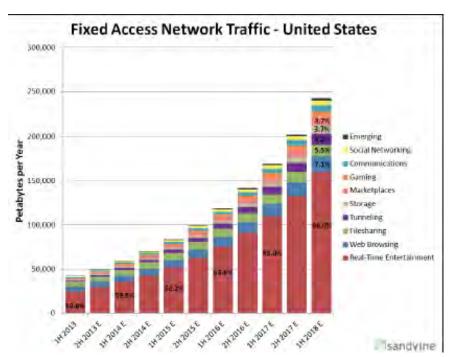

- > Internet and mass market data services: computing everywhere in society
- Mobile telephony and personalization of communications

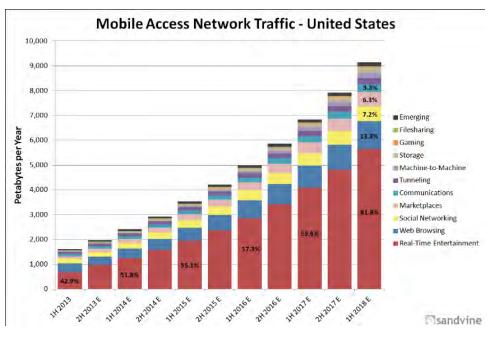
Phase 3: 2000-2012

- > Broadband: uncork the last-mile speed bottleneck
- Mobile + Internet convergence
- Personalization, everywhere/always connected, mixed/multi-media
- Social networking, social media

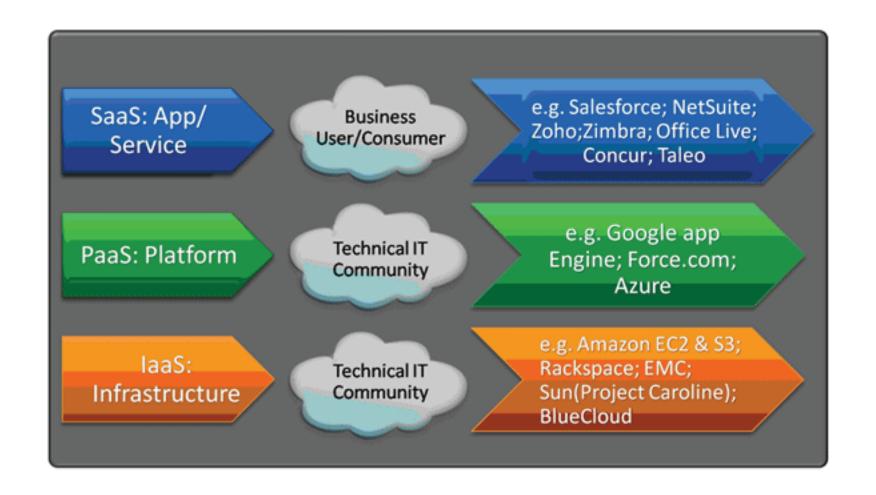
Phase 4(?): 2013+

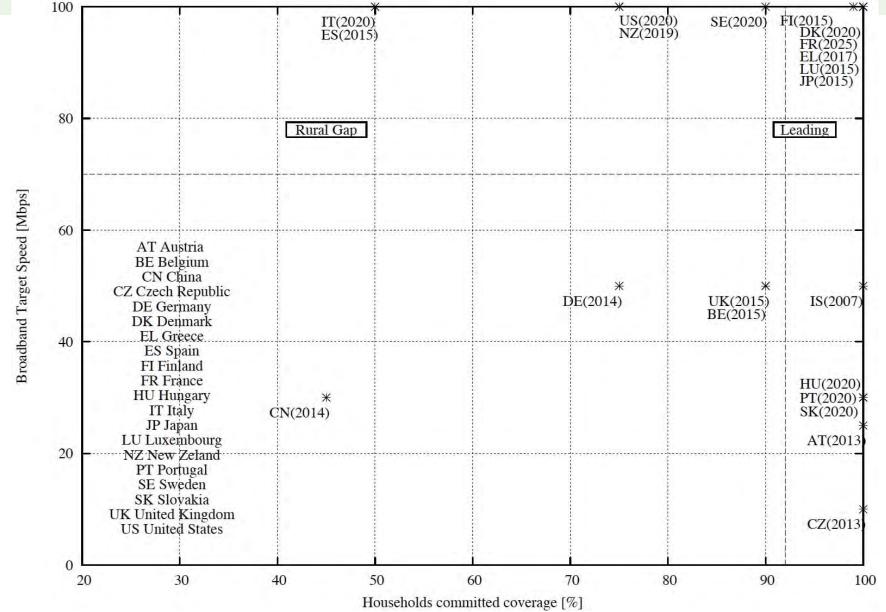
- Big Data: M2M, Sensors, Smart infrastructure/environments
- Automation and Cyber-mechanical integration
- Cloud computing: connectivity, computing/storage resources,




19

Fixed and Mobile BB Traffic Forecasts


1H2013



Fixed $50 \rightarrow 250 \text{ EB}$ Mobile $2 \rightarrow 9 \text{ EB}$ (~40% CAGR)

- -- Real time entertainment 2/3rd data
- -- Tunneling to grow
- -- Home roaming (current 20%)

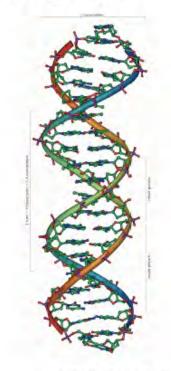
Broadband Goals: lots with 100Mbps+ NGAN targets!!!

data

MOST ENTERPRISES TODAY GENERATE MORE DATA THAN THEY CAN PROCESS

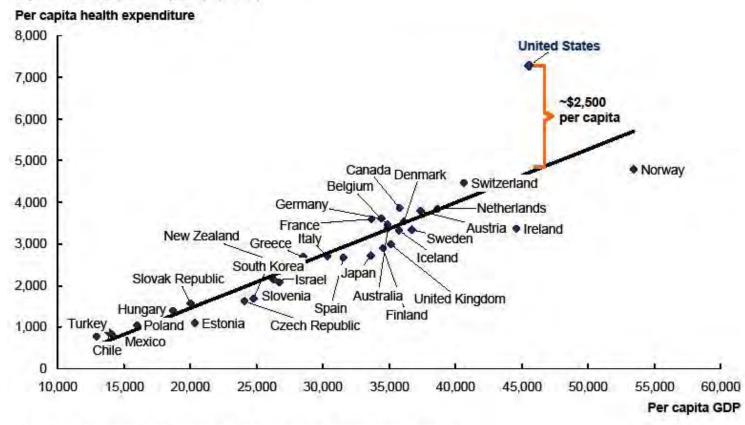
MEASUREMENTS

CLICK STREAMS

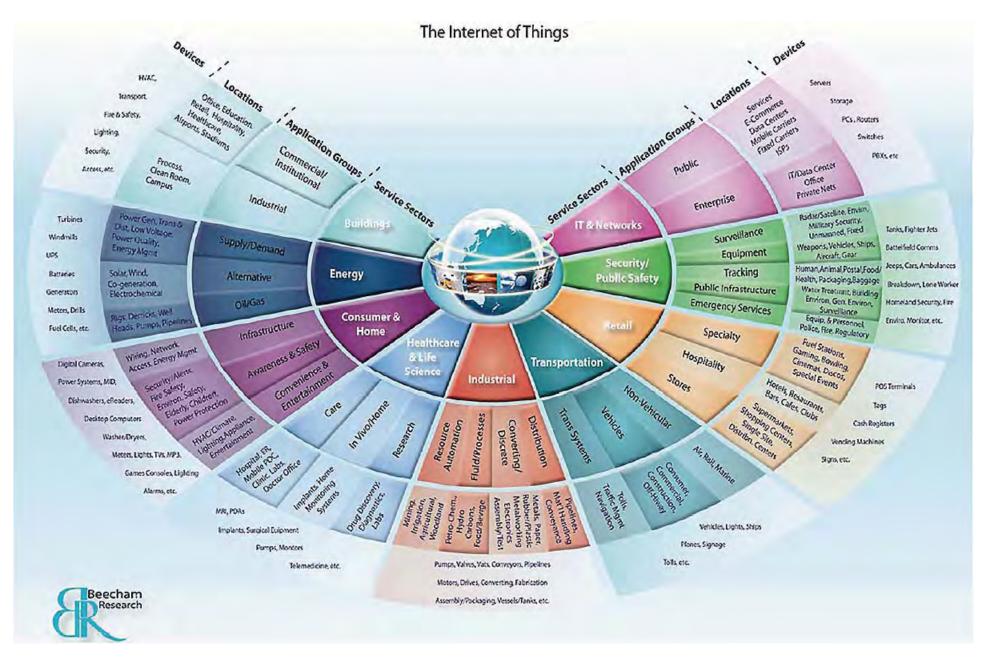


SENSORS

CREDIT CARD TRANSACTIONS


scienceray.com

...AND THE AMOUNT OF DATA IS GROWING AT 50% PER YEAR


- according to IDC

A comparison with OECD countries suggests that the total economic potential for efficiency improvements is about \$750 billion

Per capita health expenditure and per capita GDP, OECD countries, 2007 \$ purchasing power parity (PPP)

SOURCE: Organisation for Economic Co-operation and Development (OECD)

© Lehr, 2014 25