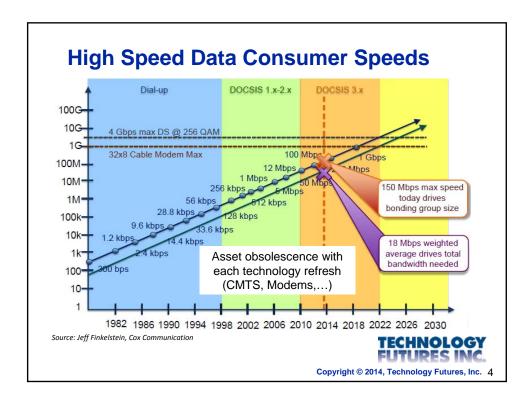


Impacts on Cable HFC Networks

Robert W Harris Senior Consultant, Technology Futures, Inc. rharris@tfi.com

TFI Communications Technology Asset Valuation Conference

Thursday, January 30, 2014


13740 Research Blvd., Bldg. C-1 • Austin, Texas 78750 (512) 258-8898 • www.tfi.com

TECHNOLOGY

Overview

- Issues and challenges over the next 10 years
- · Traffic trends and implications
- Direction of network evolution

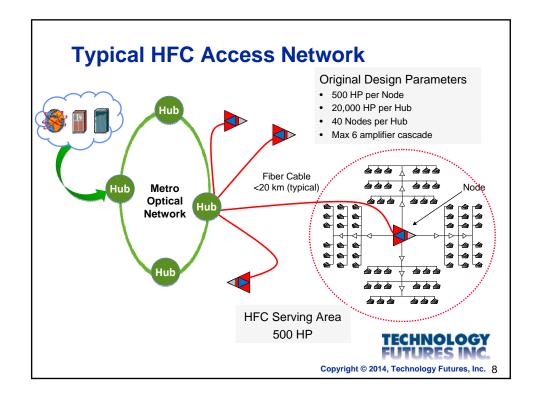
Copyright © 2014 Technology Futures, Inc.

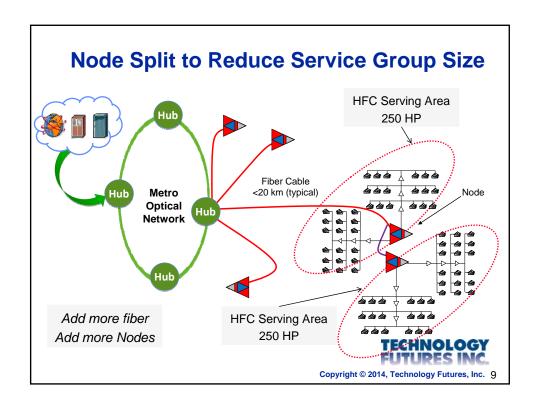
Revenue Challenges Over Next 10 Years

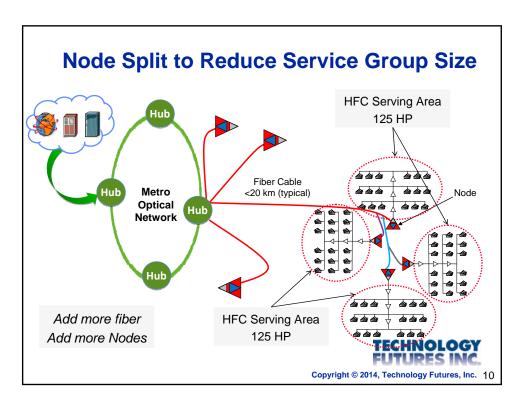
- Expanding data-carrying capacity at >50% CAGR
 - Equipment cost per Mb/s must decline by >33% to keep prices constant
- Monetizing new services
 - Expecting limited revenue from Over the Top (OTT) services
 - Cloud-based, healthcare, home security, education, business services, wireless backhaul
- Flat ARPU
 - How to manage CAPEX requirements and control costs for growing and operating new businesses

Copyright © 2014, Technology Futures, Inc. 5

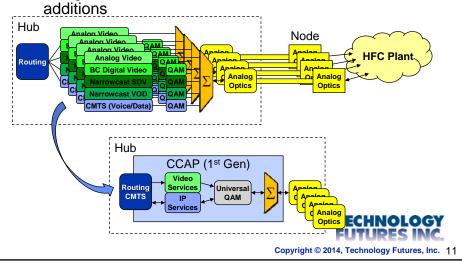
Technology Factors: Next Decade

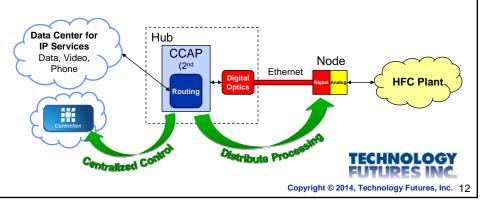

- Service migration to all-IP → equipment obsolescence
 - Analog Video to MPEG Digital Video
 - MPEG Digital Video to IP Digital Video
- Infrastructure improvements
 - Migrating the cable network that was originally built for one-way (broadcast) communications
 - Outside plant upgrades and expansion
 - Decommissioning legacy systems

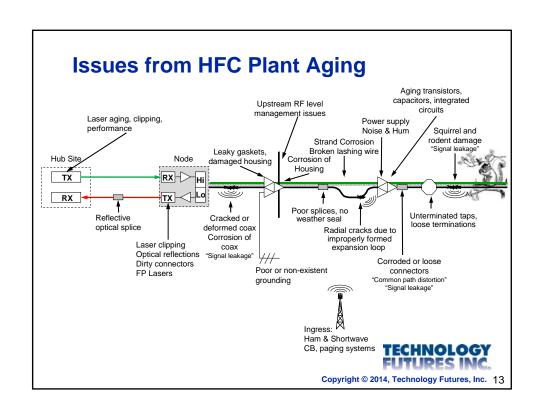



Cable Network Evolution Options

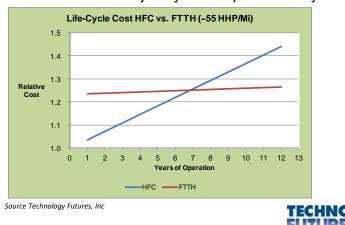
- Address congestion of HFC with current solutions
 - Smaller serving groups through Node splits and extensions
- To get to Gbps speeds over HFC requires new technologies
 - Modify the RF spectrum to expand the downstream and upstream bandwidth capacities
 - Migrate from DOCSIS 3.0 to DOCSIS 3.1
- All options require dealing with an aging HFC plant
- Upgrade to FTTH

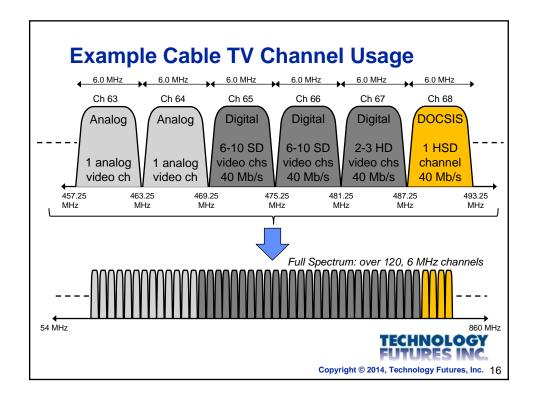


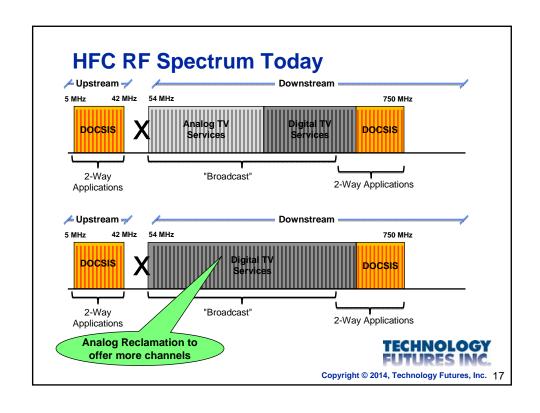

Copyright © 2014 Technology Futures, Inc.

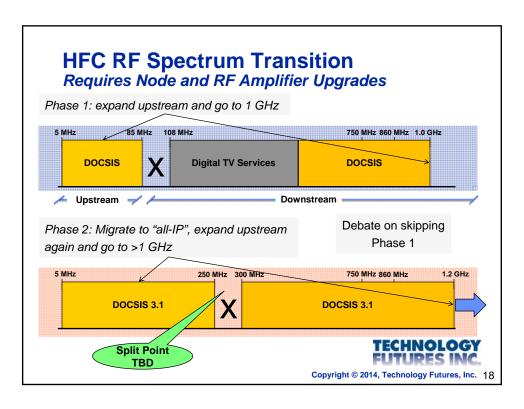

Impact of Smaller Service Groups Acquire more equipment in the Hub and outside plant along with associated construction costs for fiber

- - Provides a smaller facility footprint, lowers OPEX
 - New hardware (new capital outlays) starting 2014
 - Multiple technology refreshes (CMTSs, Nodes, QAMs, analog/digital video systems,...)


HFC vs. FTTH OPEX per Mile of Plant


	HFC	FTTH
Technical Supervision	\$ 42.03	\$ 10.51
Service Trouble Truck Rolls (for plant problems)	\$ 226.15	\$ -
Plant Maintenance Truck Rolls	\$ 235.50	\$ -
Material Inventory	\$ 49.64	\$ 4.90
Electricity Consumption	\$ 446.81	\$ -
Power Supply Battery Replacement	\$ 43.49	\$ -
Power Supply Equipment Repair	\$ 1.77	\$ -
RF Line Equipment Repair	\$ 35.46	\$ -
Vehicle Accident Loss	\$ 8.80	\$ -
Employee Injury Loss	\$ 5.01	\$ -
Emergency Cable Repair	\$ 8.51	\$ 85.11
Total annual O&M expense per mile of OSP plant	\$ 1,103.17	\$ 100.52


TECHNOLOGY FUTURES INC.


Life-Cycle Cost of HFC vs. FTTH

- · Broad assumptions but a generally appropriate curve
- Difficult for MSOs to justify the required outlay of CAPEX

Copyright © 2014 Technology Futures, Inc.

DOCSIS 3.1 Considerations

- Major step up from DOCSIS 3.0
- Maintains backward compatibility
 - Will be compatible with DOCSIS 1.1, 2.0 and 3.0 but to get the faster speeds of D3.1 the modems will need to be replaced
 - Doesn't require replacing the HFC plant but the other activities discussed need to happen
- Extends the utility of HFC plant
 - Delivers higher speeds in the downstream (up to >5Gbps) and upstream (>1 Gbps)
 - Service offerings become competitive with FTTH

Copyright © 2014, Technology Futures, Inc. 19

Future Potential of DOCSIS 3.1

	Parameter	Now	Phase 1	Phase 2	Phase 3	
Downstream	Frequency Band	54 - 1002 MHz	108 - 1002 MHz	(300) - 1002 MHz	(500) - 1700 MHz	
	Modulation	256-QAM	256-QAM	<u>></u> 1024-QAM	<u>></u> 1024-QAM	
	Channels	8	24	116	200	
	Data Capacity	300 Mbps	1 Gbps	5 Gbps	10 Gbps	
Upstream	Frequency Band	5 - 42 MHz	5 - 85 MHz	5 - (230) MHz	5 - (400) MHz	
	Modulation	64-QAM	64-QAM	<u>></u> 256 QAM	> 1024 QAM	
	Channels	4	12	33	55	
	Data Capacity	100 Mbps	300 Mbps	1 Gbps	(2) Gbps	

Key Conclusions

- All services will move to IP
- Keeping HFC viable requires major investments in infrastructure upgrades and replacing legacy equipment
 - Deploy more fiber and add more Nodes closer to the home
 - Converging all services onto a single platform with (CCAP) will impact Hub electronics (CMTS, analog/digital video systems)
 - Upgrade RF amplifiers & nodes to expand the RF spectrum
 - Upgrade DOCSIS modems to support higher speeds

