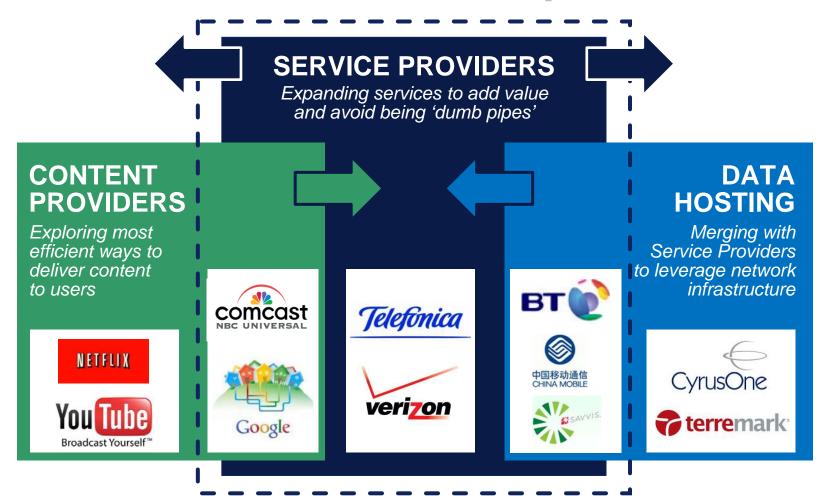
Technology Changes in Data Centers

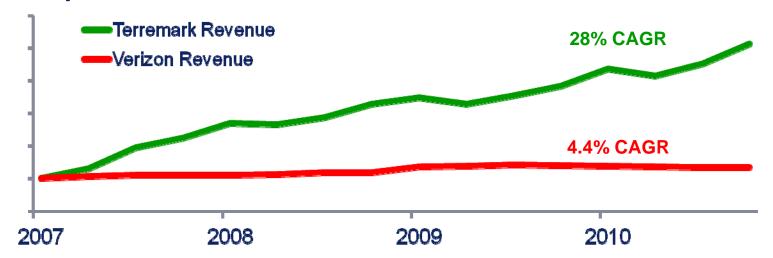
Mark Murrill
Emerson Network Power


TFI Conference, January 2014 Austin, TX

Agenda

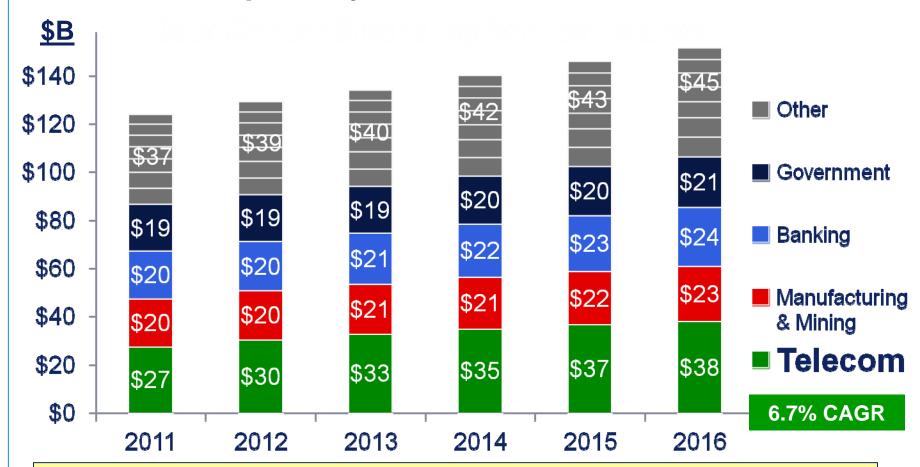
- Market trends and impact on data center design
 - Convergence around traditional telecom space
 - Focus on 'green' energy and more
 - Importance of real estate selection
- Technology and design innovations
 - Introducing hyperscale data centers
 - » Common characteristics
 - » Infrastructure innovation
 - Planning for the future location, energy, construction
- Snowflakes...

Trend: Competitive, Converging Industries Blur Traditional Telecom Space


Service providers expanding business models in response to opportunities and competition

Rapid Convergence of Data Center and Traditional Telecom

Timeline →


Example: Verizon & Terremark

Data center offerings are an attractive growth area for service providers

Telecom Spend on Data Centers Is Large & Growing

Data Center Spend by Vertical Market

Convergence of traditional telecom with data centers represents significant growth in the market

Trend: New Options for Where and How to Support Applications

Application Decision Point On-Premise Co-location **Public Cloud Application Application Application** Customer **IT Equipment IT Equipment IT Equipment** Managed Vendor Infrastructure Infrastructure Infrastructure **Provided**

Requirements

Evaluation Criteria

- Performance
- Scalability
- Accessibility
- Security

Strategy

Resources

- Budget
- Capabilities
- Existing Assets
- Timing

6

Trend: 'Green' Energy Source Implementation

- Data center operators targeted for environmental harm
- Large data centers typically require

Megawatts: 1 - 50

Availability: 24 x 7

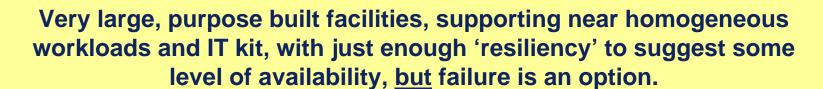
- Data centers operate when
 - The sun doesn't shine, the wind doesn't blow, the tide doesn't flow
- Solution: combinations of grid, storage, local production

Trend: New Location Considerations

- Revised decision framework
 - Tax structure and incentives
 - Energy sources (CO₂, water use, renewable mix)
 - » On-site, near site generation, storage
 - Climate, annual, seasonal, variations, 100-year peak
 - Predominant wind direction
 - » Pollen, sand (haboob), fire history, air / water pollution
 - » Snow / ice loading
 - Water table, water rights / access
 - Regulatory / security environment
 - Access, fiber, fuel, security

Defining Hyperscale Data Centers

- "It may not be possible to define a 'Hyperscale Data Center' but I know one when I see it."
 - eBay announces new game-changing data center that will run on alternative energy (ANHosting)
 - Microsoft sets out to build \$250M data center in Finland (CNN)
 - Google to increase investment in Finnish data center (Rueters)
 - Apple, Facebook put Prineville on the map (Computerworld)
 - Yahoo's greenest data center opens, PUE 1.08 (PC News)



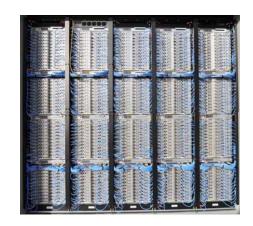
Hyperscale Innovation

Building data centers for emerging hyperscale <u>applications</u> differs from building data centers for traditional applications.

Scale & Location (Outside – In)

Software Redundancy (Inside – Out)

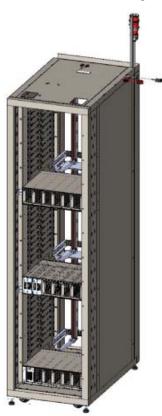
New Computing and Infrastructure Topologies


Hyperscale applications combine these innovations to significantly reduce up front capital cost and keep operating costs low

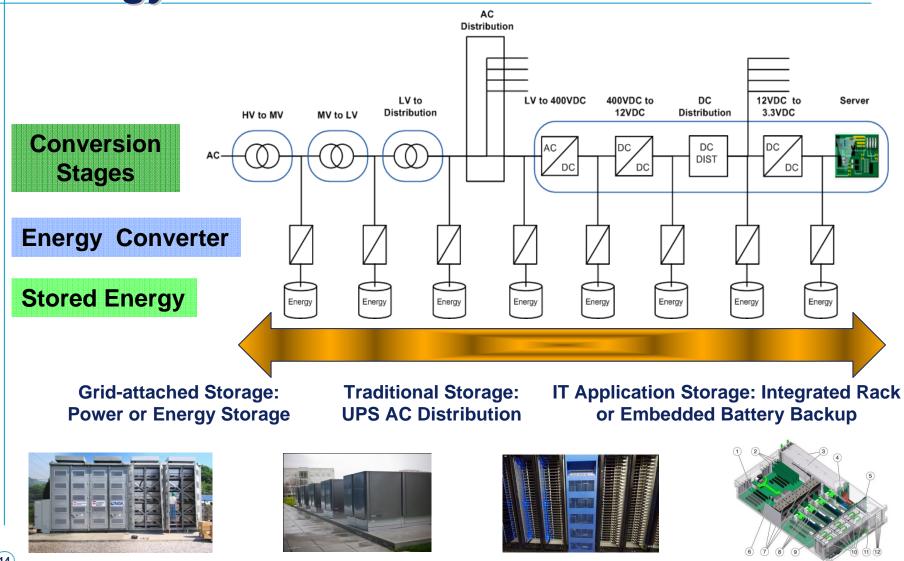
Design Criteria: Location/Scale & Redundancy Required

- Multi-mode design approaches
- Outside In → Location selection
 - Focusing on finding optimal climate, energy sources, tax incentives, resource availability to drive location

- Letting technology at the chip, server, storage, and rack level determine best building, mechanical, electrical configuration
- Purpose built servers, storage, network
- Using business model, software, etc. to define resiliency


Innovative Infrastructure - Cooling

- 'Free Cooling' everywhere
 - In the right location
 - Monitor, filter, and fire-safe incoming air
- 'Free Cooling' is not FREE!
 - Massive blowers / air handlers N+X
 - Evaporative cooling has a price



Innovative Infrastructure - Power

- Goal: Achieve 'availability' in non-traditional means
- Energy storage in the rack or row: fuel cell or battery
 - Open Rack concept
 - Reconfigured mechanical design for easier thermal management
 - Innovative power distribution (12V DC distributed bus bar)
 - Flexible backup power (in-rack battery backup unit)
- On-site energy sourcing
 - Renewables
 - Fuel cells
 - Utility as 'back up' / generator-less

Energy - What's Next?

Mission

To become the global authority on **resource efficiency** in information technology and data centers.

Values

- The Green Grid's core values center on businessoriented resource efficiency that enables economic prosperity and ecologic sustainability.
- The Green Grid is data driven, vendor neutral, collaborative and transparent.
- The Green Grid addresses resource efficient IT by providing metrics, tools, best practices, specifications and standards for self-improvement within businesses, and better informed policy making in government.

Members Include Over 145 Companies Worldwide

Technical Committee Structure

Technical committees complimented by:

- ■Programs Committee
 - Provides strategic guidance & oversight
- ■Interest Groups
 - 8 Areas of Strategic Importance
 - » Data Center Maturity Model (DCMM)
 - » Data Center and ICT Utilization
 - » Software Efficiencies
 - » Water Usage
 - » Data Center Certification
 - » Regulatory
 - » Cloud Computing
 - » Data Center Lifecycle
- **■**Discussion Groups

Alternate Deployment Techniques

Traditional "Stick-Build"

Design

Build

Install

- Build = creating physical structure
- Install = adding mechanical/electrical plant and IT eqpt.

Emerson Data Center

Containerized Solution

Design

Manufacture

Install

- Manufacture = pre-fabricating container in factory, including mechanical/electrical plant
- Install = placing container <u>inside or outside</u> a structure, connecting mechanical/electrical plant, adding IT eqpt.

NBN Australia Data Center

■ Modular Constructed Data Center (MCDC)

Design

Manufacture

Assemble

- Manufacture = pre-fabricating structures in factory, including mechanical/electrical plant
- Assemble = combining structures into one superstructure, connecting mechanical/electrical plant, adding IT eqpt.

The MCDC becomes the building!

Containerized Solutions

- Small node
 - Base station (telecom mobile)
 - Transmission (telecom, gas & oil)
 - Analyzer (gas & oil)
- Remote units
 - Repeater, distribution (telecom-optical)
 - Remote instrumentation (gas & oil)

- Switching & control centers
 - Optical main node (telecom)
 - Control center (gas & oil)
 - Automatic switchgears (gas & oil, mining)
- Energy center
 - Power conversion and backup (telecom, IT)
- Data center
 - Bank, telecom, IT, gas & oil, insurance

Modular Constructed Data Center

Just Like Snowflakes...

No two data centers are the same

- Multi-directional innovation
 - Outside-in (climate, energy eco-system in)
 - Inside-out (processor out)
- Energy generation and storage will continue to drive data center design

Contact Information

- Mark Murrill, <u>mark.murrill@emerson.com</u>
- Jack Pouchet, jack.pouchet@emerson.com