

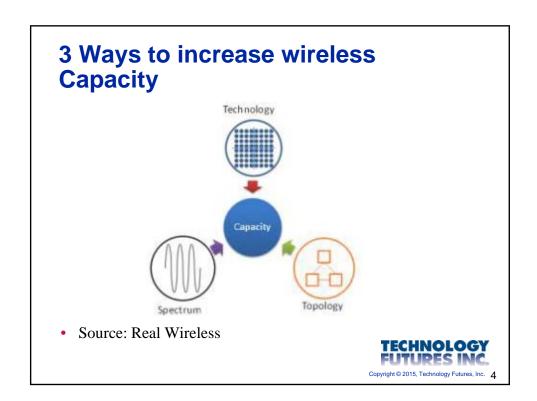
TFI Wireless Performance Factors

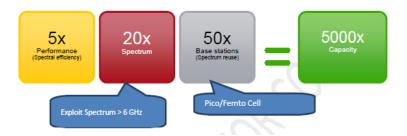
Ray Hodges Senior Consultant, Technology Futures, Inc.

rhodges@tfi.com

TFI Communications Technology Asset Valuation Conference

> January 28-29, 2015 Radisson Downtown Austin, Texas


13740 Research Blvd., Bldg. C-1 • Austin, Texas 78750 (512) 258-8898 • www.tfi.com


Two Key Drivers for New Generations

- Mobile data traffic is growing much more rapidly than connections
- Greatly improving cost/performance of newer technology

Example: 5G Vs LTE Release 8

Source: Nokia Siemens Networks

The three ways are not independent

- You have to have the right technology to add more spectrum across many bands and have it function as a single system.
- You have to have the right technology to minimize inference of many base stations in small cells.
- Some bands of spectrum are better for small cells than others.

We need to look at more than Bits/s/Hz

• Spectral efficiency, spectrum efficiency or bandwidth efficiency refers to the information rate that can be transmitted over a given bandwidth in a specific communication system.

Net throughput at the channel or link level is a better measure but not complete

• The **link spectral efficiency** of a digital communication system is measured in <u>bit/s/Hz</u>, or, less frequently but unambiguously, in (bit/s)/Hz. It is the <u>net bitrate</u> (useful information rate excluding <u>error-correcting codes</u>) or <u>maximum throughput</u> divided by the <u>bandwidth</u> in hertz of a communication channel or a data link.

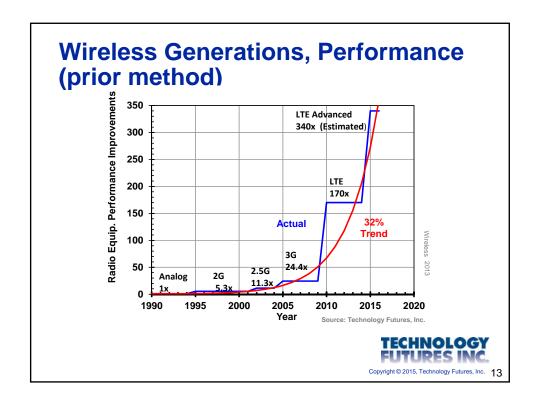
Performance comparisons should be at the system level

• system spectral efficiency or area spectral efficiency is typically measured in (bit/s)/Hz per unit area, in (bit/s)/Hz per cell, or in (bit/s)/Hz per site. It is a measure of the quantity of users or services that can be simultaneously supported by a limited radio frequency bandwidth in a defined geographic area.

Performance comparison notes

- In the past, TFI estimated performance improvements in equivalent voice channels compared to analog 1G = 1. This becomes difficult for systems designed for data.
- We now measure performance improvements by comparing spectral efficiency at the system level.

Wireless	Generations,	, Performance
----------	--------------	---------------


Spectral Efficiency of Cellular Wireless Systems										
			Max Net Bitrate/	Bandwidth	Max Link Efficiency			System		
US 1% P			carrier/ Sp stream	Per Carrier	((bits/s)/Hz)	Typical	Efficiency		
Year	Gen	Standard	(Mbits/s)	(MHz)	SISO	MIMO	Reuse	((bits/s)/Hz/site)		
1983	1G	AMPS	0.0003	0.03	0.01		1/7	0.001		
1991	2G	D-AMPS	.013 x 3 TS=.039	0.03	1.3		1/9	0.144		
2000	2G	GSM	.013 x8 TS =.104	0.2	0.52		1/3	0.173		
2000	2G	CDMA 2000	22 calls	1.2288	.0078/call		1	0.172		
	2G	Average						0.163		
2002	2.5G	GSM+EDGE	.384 (.2 typ.)	0.2	1.92 (1 typ)		1/3	0.33		
2002	2.5G	CDMA 1x PD	0.153	1.2288	0.125		1	0.172		
	2.5G	Average						0.251		
2005	3G	CDMA EV-DO	3.072	1.2288	2.5		1	1.3		
2005	3G	UMTS	0.384	5	0.077			0.51		
	3G	Average						0.905		
2007	3.5G	HSDPA	21.1	5	4.22		1	4.22		
2008	4G	LTE	81.6	20	4.08	16.32	1	16.32		
2015	4G	LTE Adv	75	20	3.75	30	1	30		

Source: Technology Futures, Inc.

TECHNOLOGY FUTURES INC.

Copyright © 2015, Technology Futures, Inc. 11

Wireless Generations, Performance Spectral Efficiency of Cellular Wireless Systems Actual 12 TECHNOLOGY Copyright © 2015, Technology Futures, Inc. 12

Not much difference in results of the two methods

- The new trend is 29%/year vs 32%/year for the prior.
- The difference is mainly due to the value given 1G as the starting point.
- The new method should work better going forward.

Issues with performance comparisons

- Improvements to each generation continue thru its life cycle.
- Although 1G and 2G are now history there is still some debate as to how many more voice channels 2G supported. The answer changed over time as 2G improved.
- 2.5G added packet data to a system designed for voice. Improvements and limitations less controversial.

Copyright © 2015, Technology Futures, Inc. 1

Issues with performance comparisons (continued)

- 3G was designed for data with obvious advantages over 2.5G for data.
- The issue now is comparing 4G LTE to 3G and improved 3G also referred to as 3.5G and 4G.
- 3G has improved to the point that it is equal to LTE in spectral efficiency but LTE has 4 times the system capacity with 4x4 MIMO.

Issues with performance comparisons (continued)

- LTE A has eight times the system capacity with 8x8 MIMO.
- Real Wireless did an extensive study of 4G vs. 3G in 2011using system spectral efficiency as the base of comparison. Their findings support TFI's for that point in time.

Copyright © 2015, Technology Futures, Inc.