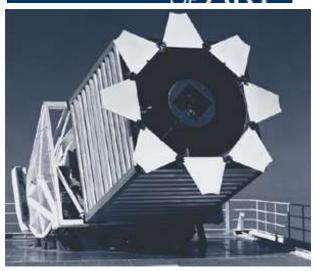
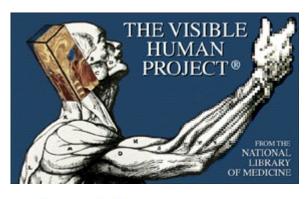
Summarizing video

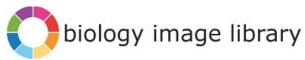
Kristen Grauman Department of Computer Science University of Texas at Austin

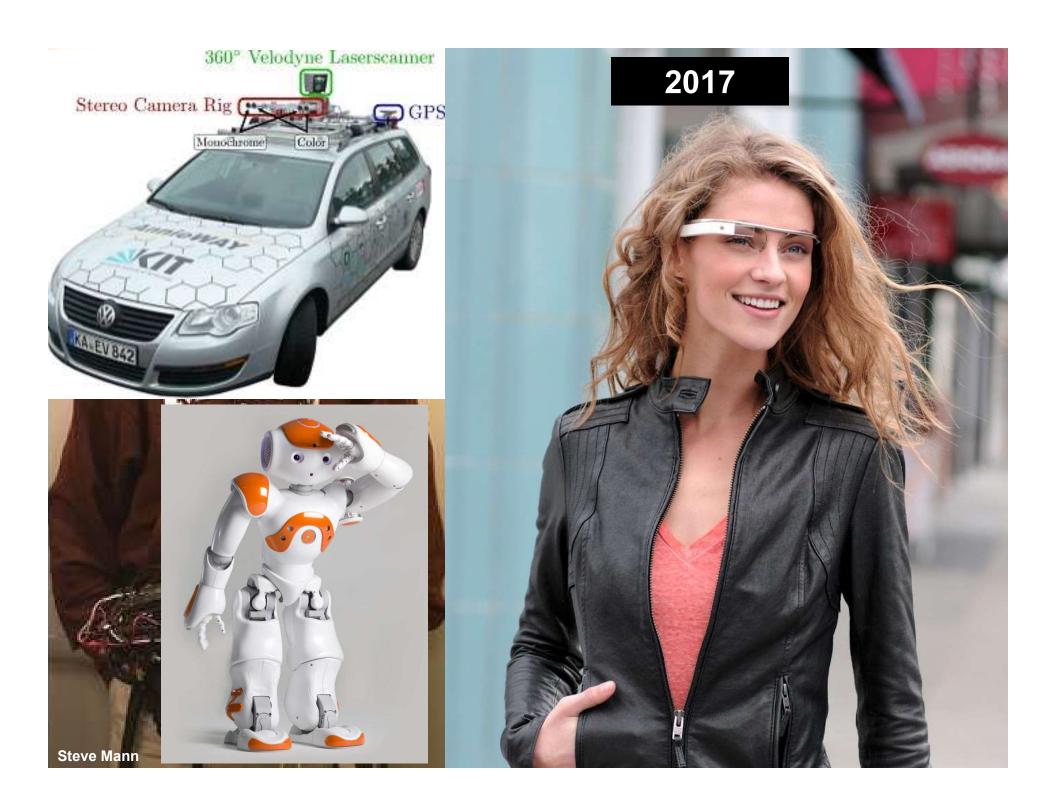
Explosion of visual data

gettyimages[®]



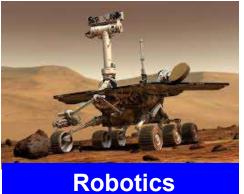






New era for first-person vision

Science



Kristen Grauman, UT Austin

First person vs. Third person

Traditional third-person view

First-person view

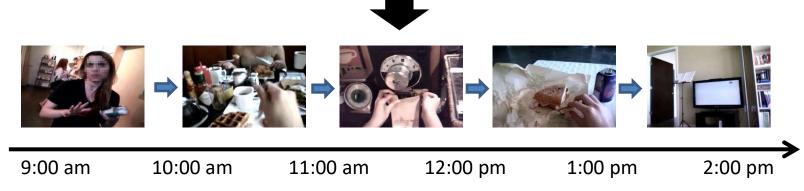
First person vs. Third person

First person "egocentric" vision:

- Linked to ongoing experience of the camera wearer
- World seen in context of the camera wearer's activity and goals

Our goal: Summarize egocentric video

Input: Egocentric video of the camera wearer's day



Output: Storyboard summary

What makes egocentric data hard to summarize?

- Subtle event boundaries
- Subtle figure/ground
- Long streams of data

Prior work: Video summarization

- Largely third-person
 - Static cameras, low-level cues informative
- Consider summarization as a sampling problem

[Wolf 1996, Zhang et al. 1997, Ngo et al. 2003, Goldman et al. 2006, Caspi et al. 2006, Pritch et al. 2007, Laganiere et al. 2008, Liu et al. 2010, Nam & Tewfik 2002, Ellouze et al. 2010,...]

Idea: Story-driven summarization

Characters and plot ↔ Key objects and influence

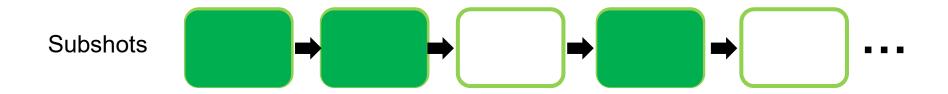
Idea: Story-driven summarization

Characters and plot ↔ Key objects and influence

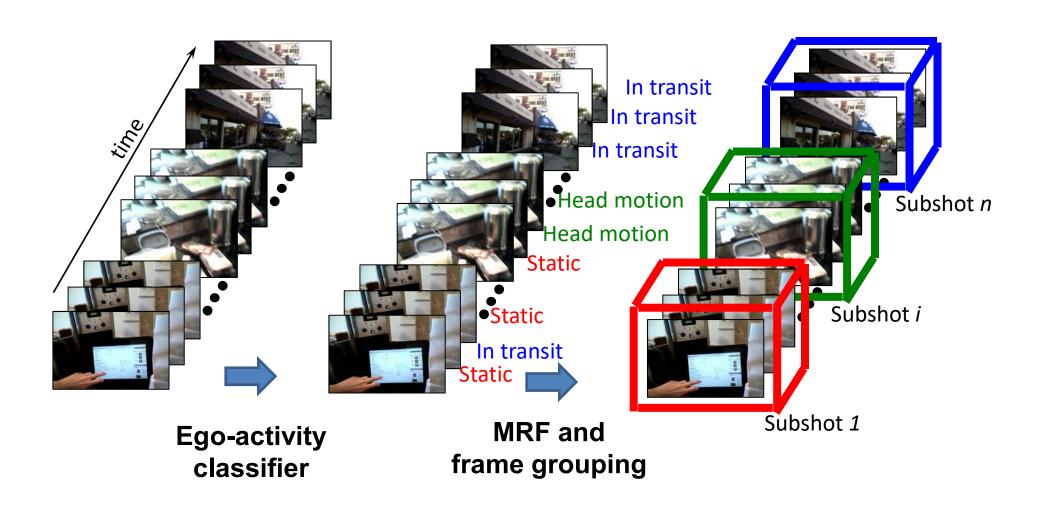
Summarization as subshot selection

Good summary = chain of *k* selected subshots in which each influences the next via some subset of key objects

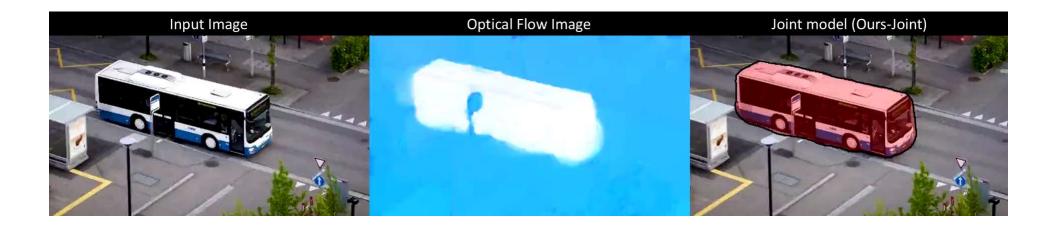
$$S^* = \arg \max_{S \subset \mathcal{V}} \ \lambda_s \ \mathcal{S}(S) + \lambda_i \ \mathcal{I}(S) + \lambda_d \ \mathcal{D}(S)$$
 influence importance diversity



Egocentric subshot detection



Finding objects in video

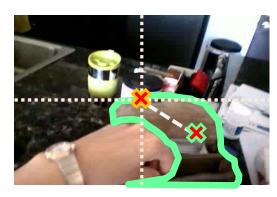


Deep learning framework to automatically segment generic objects in video

Learning object importance

We learn to rate regions by their egocentric importance

distance to hand



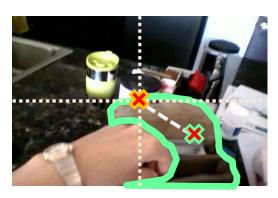
distance to frame center

frequency

Learning object importance

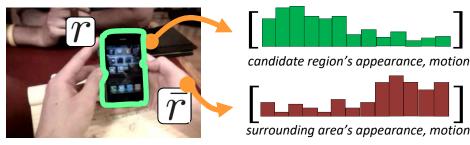
We learn to rate regions by their egocentric importance

distance to hand



distance to frame center

frequency



"Object-like" appearance, motion
[Endres et al. ECCV 2010, Lee et al. ICCV 2011]

overlap w/ face detection

Region features: size, width, height, centroid

Kristen Grauman, UT Austin

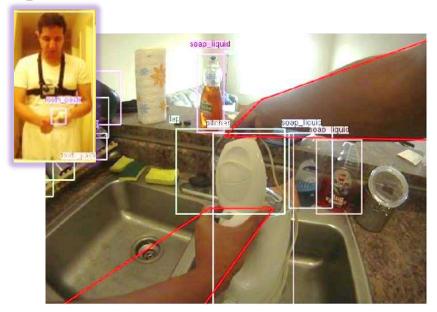
[Lee et al. CVPR 2012, IJCV 2015]

Datasets

UT Egocentric (UT Ego) [Lee et al. 2012]

Activities of Daily Living (ADL)

[Pirsiavash & Ramanan 2012]



4 videos, each 3-5 hours long, uncontrolled setting.

We use visual words and subshots.

20 videos, each 20-60 minutes, daily activities in house.

We use object bounding boxes and keyframes.

Kristen Grauman, UT Austin

Example keyframe summary – UT Ego data

http://vision.cs.utexas.edu/projects/egocentric/

Original video (3 hours)

Our summary (12 frames)

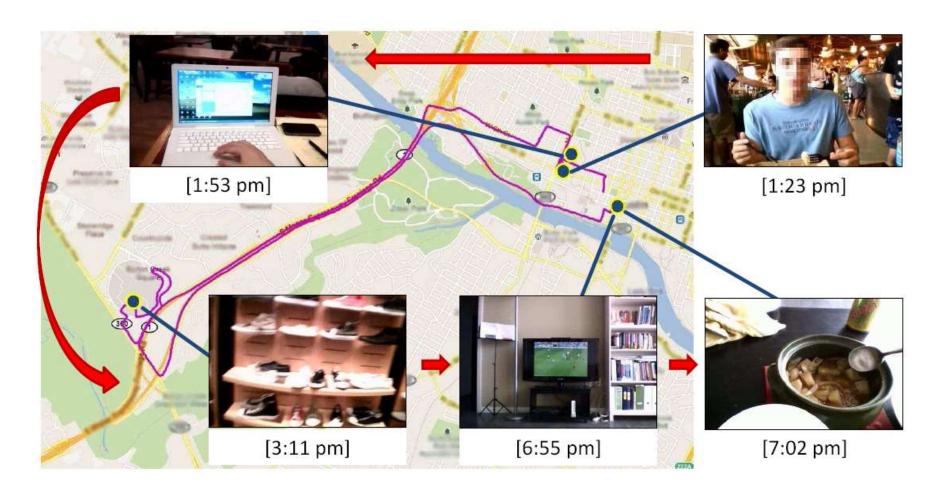
Example skim summary – UT Ego data

http://vision.cs.utexas.edu/projects/egocentric/

Ours

Baseline

Generating storyboard maps



Augment keyframe summary with geolocations

[Lee et al., CVPR 2012, IJCV 2015]

Kristen Grauman, UT Austin

Human subject results: Blind taste test

How often do subjects prefer our summary?

Data	Vs. Uniform sampling	Vs. Shortest-path	Vs. Object-driven Lee et al. 2012
UT Egocentric Dataset	90.0%	90.9%	81.8%
Activities Daily Living	75.7%	94.6%	N/A

34 human subjects, ages 18-60
12 hours of original video

Each comparison done by 5 subjects

Total 535 tasks, 45 hours of subject time

Summarizing video

Key questions

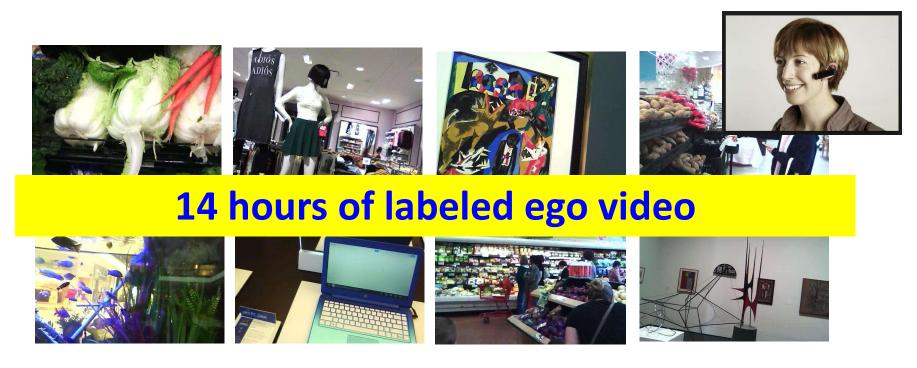
- What is the story told by important objects?
- When is recorder engaging with scene?
- Where to look within a wide field of view?

Goal: Detect engagement

Definition:

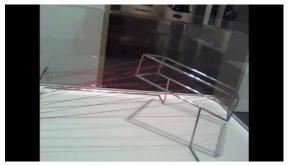
A time interval where the recorder is attracted by some object(s) and he interrupts his ongoing flow of activity to purposefully gather more information about the object(s)

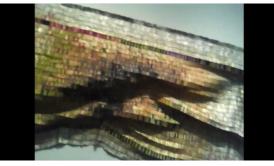
Egocentric Engagement Dataset



- "Browsing" scenarios, long & natural clips
- 14 hours of video, 9 recorders
- Frame-level labels x 10 annotators

Challenges in detecting engagement

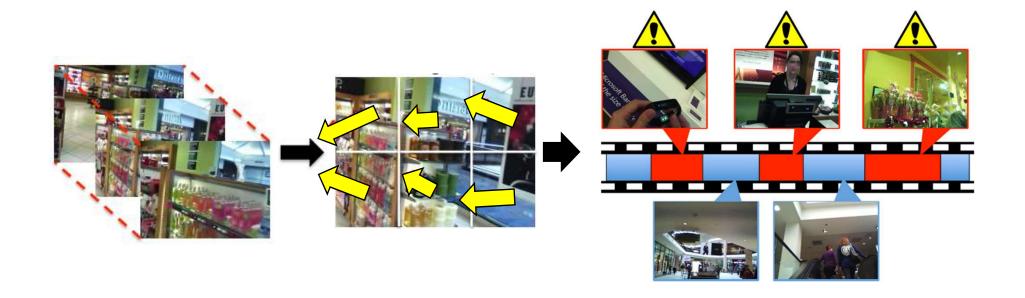




- Interesting things vary in appearance!
- Being engaged ≠ being stationary
- High engagement intervals vary in length
- Lack cues of active camera control

Our approach

Learn motion patterns indicative of engagement



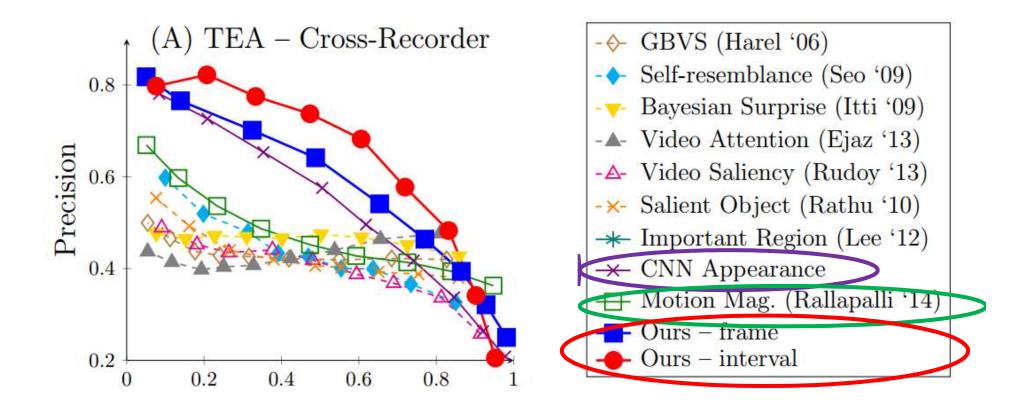
Results: detecting engagement

Blue=Ground truth Red=Predicted

Results: failure cases

Blue=Ground truth Red=Predicted

Results: detecting engagement



14 hours of video, 9 recorders

Summarizing video

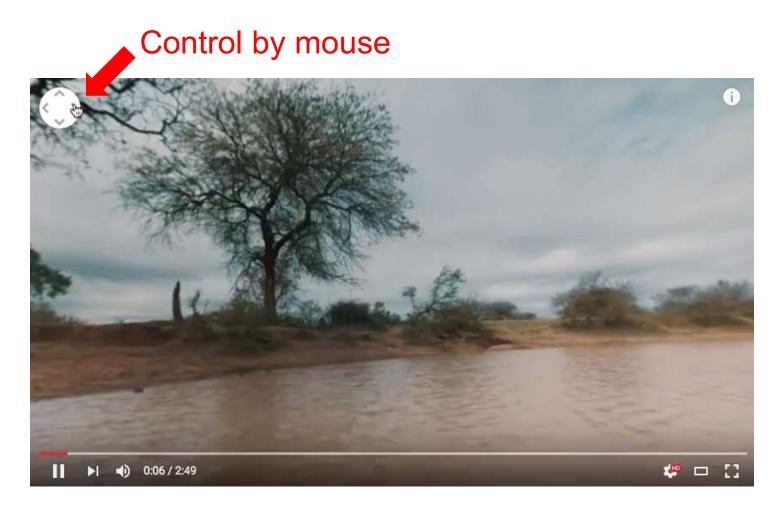
Key questions

- What is the story told by important objects?
- When is recorder engaging with scene?
- Where to look within a wide field of view?

360° Cameras

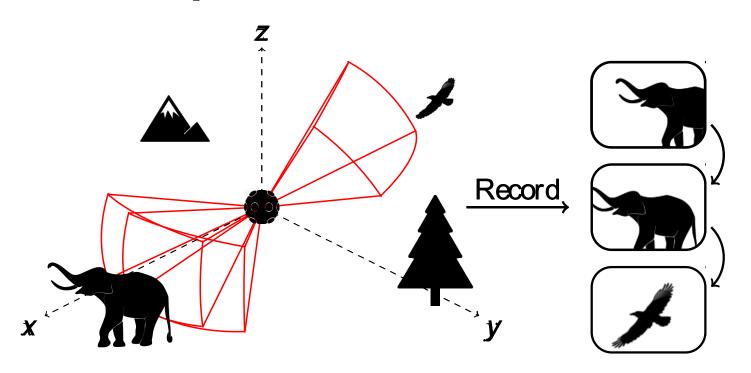
Kristen Grauman, UT Austin

Challenge of viewing 360° videos



How to find the right direction to watch?

New problem: Pano2Vid



Pano2Vid Definition

Input: 360° video

Output: natural-looking normal-field-of-view video

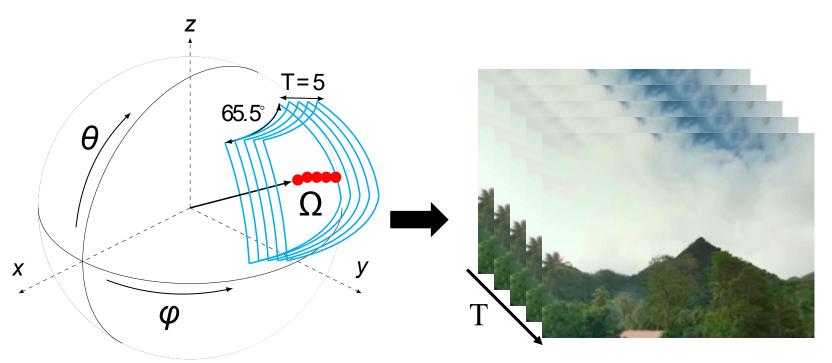
Task: control the virtual camera direction

Our approach – AutoCam

- 1. Handle unrestricted real 360° video
- 2. Learn videography tendencies from unlabeled Web videos
 - Diverse capture-worthy content
 - Proper composition

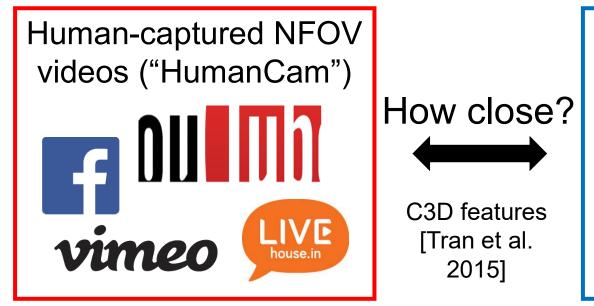
Spatio-temporal glimpse

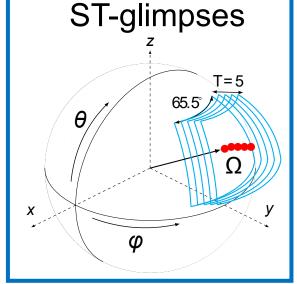
- Short NFOV video extracted from 360° video
- Makes 360° content comparable with NFOV videos



Scoring capture-worthiness

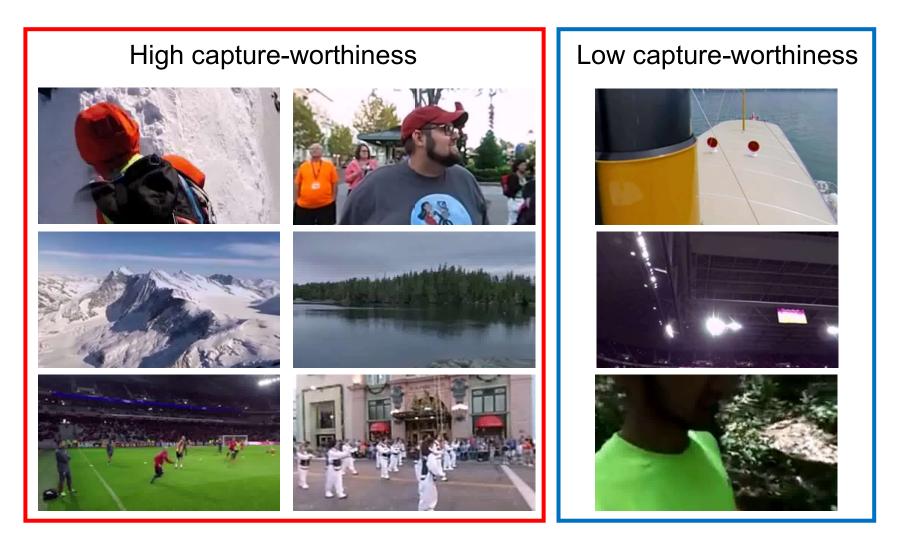
- Capture-worthiness
 - Does the spatio-temporal glimpse look human-captured?





Unlabeled video

Example spatio-temporal glimpses



First frame of glimpses scored high/low by our approach

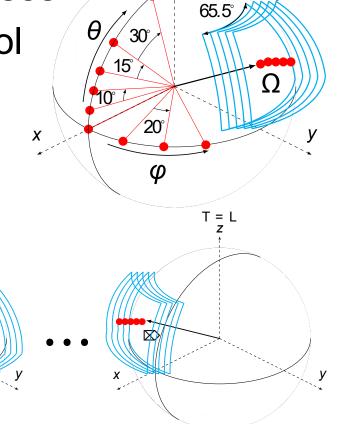
Construct virtual camera trajectory

Densely sample ST-glimpses

Continuous camera control

T = 1

ST-glimpse selection



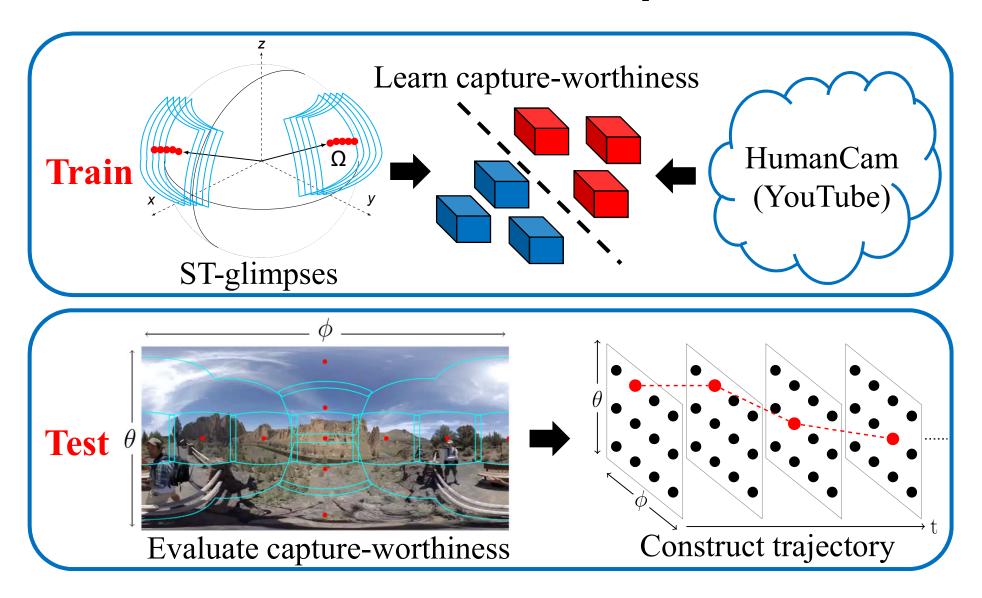
T=5

Time

Pose as shortest path(s) problem

Kristen Grauman, UT Austin

AutoCam Recap

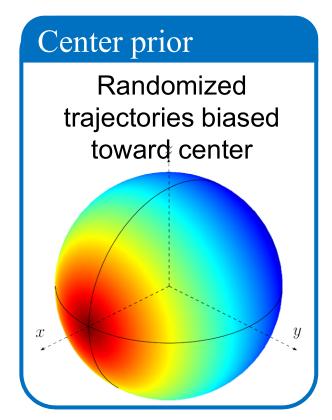


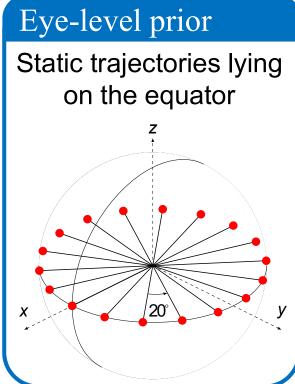
Datasets

• All videos crawled from YouTube using keywords: "Hiking", "Mountain climbing", "Parade", "Soccer"

	# videos	Total length
360° videos	86	7.3 hours
HumanCam	9,171	343 hours

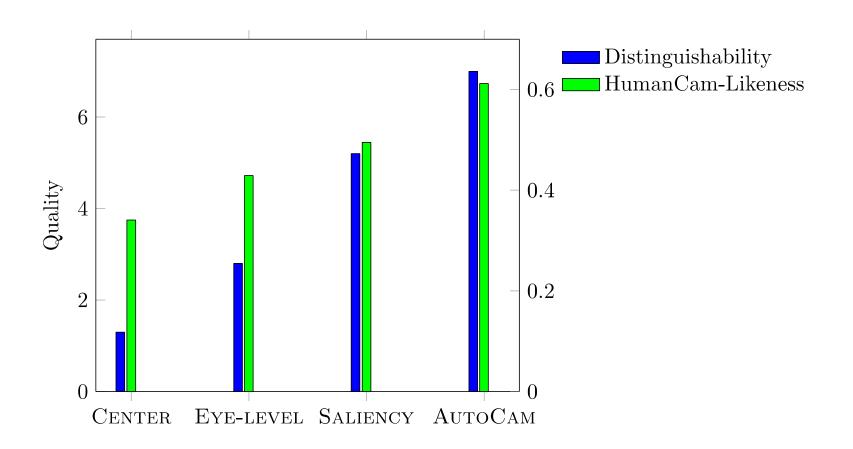
Baselines





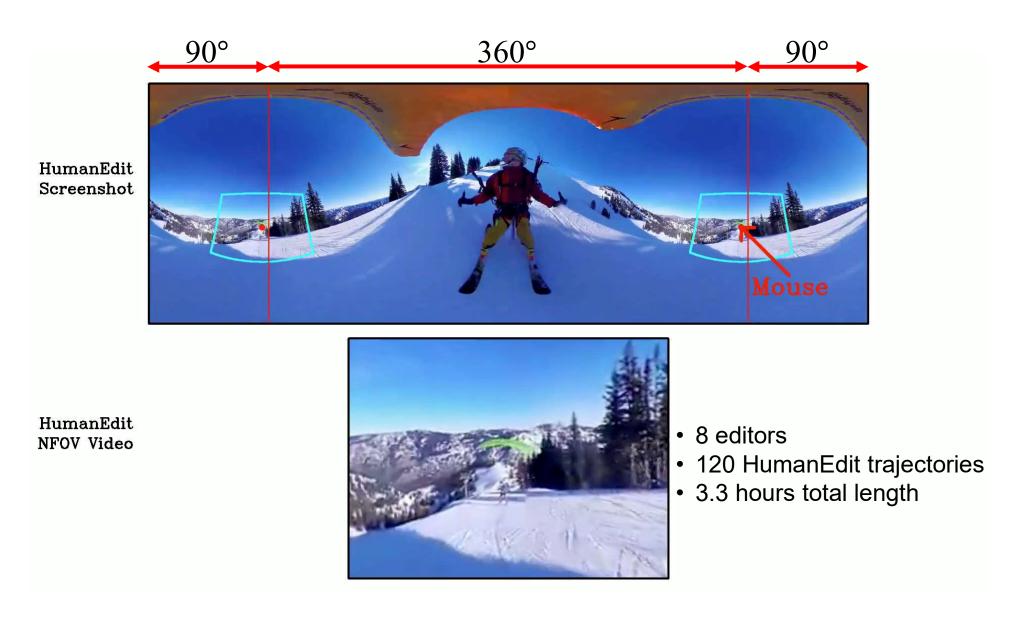


AutoCam results vs. Web videos

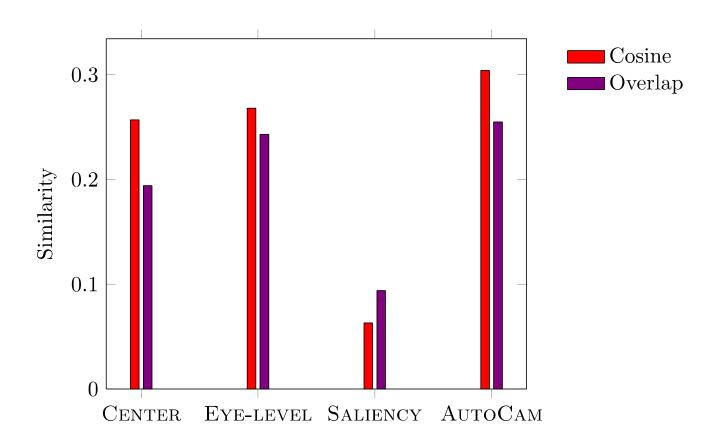


Quantify quality by how indistinguishable algorithm outputs are from human-taken video

What would a human editor select?



AutoCam results vs. Human editors



AutoCam best matches the humancontrolled camera

Kristen Grauman, UT Austin

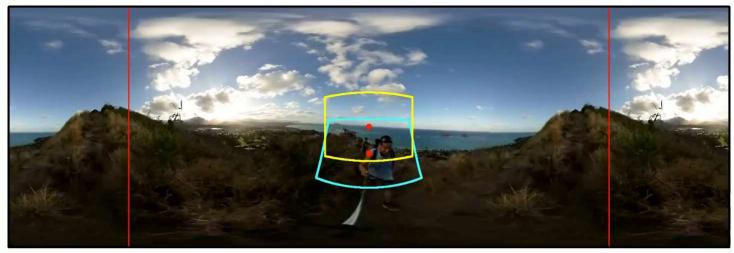
Example AutoCam Output 1

Input 360° Video + Camera Trajectory

AutoCam
Output Video

Kristen Grauman, UT Austin

Example AutoCam Output 2

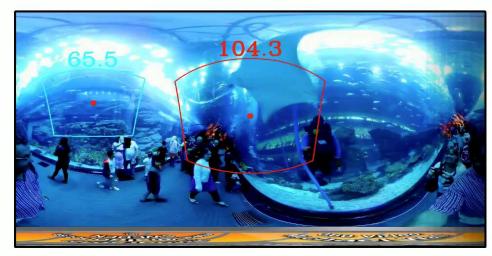


AutoCam

Eye-level Prior

Example AutoCam Output 3

Input 360° Video + Camera Trajectories



With Zooming

Without Zooming

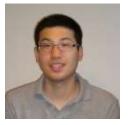
Kristen Grauman, UT Austin

Next steps

- Video summary as an index for search
- Learning to summarize from examples
- Streaming computation
- Visualization, display
- Multiple modalities e.g., audio, depth,...

Summary

- Summarization algorithms are urgently needed to cope with deluge of video data
- New ideas
 - Story-like summaries
 - Detecting when engagement occurs
 - Predicting "where to look" in 360 video



Yong Jae Lee

Yu-Chuan Su

Bo Xiong

Lu Zheng