

# Communications Equipment Price Indexes: A Look Under the Hood

---

**Vincent Russo**

Chief, Section of Durable Goods  
Producer Price Index  
TFI Technology Conference  
January 23-24, 2020  
Austin, TX



[www.bls.gov](http://www.bls.gov)

# BLS Washington Office



# TOPICS

---

- Background on the PPI
- Theoretical model
- Index calculation and weighting
- Sampling and Collection practices
- Adjusting for product change
- Comparing adjustment methods
- Future work

# Producer Price Index: What is it?

---

Voluntary monthly survey that measures average changes in prices received by domestic producers for their output of goods and services

- Not a cost of living index
- Not an input cost index
- Not a buyer's price index
- Not an import price index

# THREE KEY POINTS

---

- Voluntary
  - ▶ Sampled firms can (and do ☹) refuse to cooperate with the survey, non-response
- Domestic producers
  - ▶ Imports are not in scope
  - ▶ Global production chains blur 'domestic'
- Output
  - ▶ Prices received by manufacturers
  - ▶ Not collected from buyers

# HISTORY OF PPI

---

- First published in 1902, one of the oldest Federal economic time series
- Known as the 'Wholesale Price Index (WPI) until 1978
- Focused initially on Mining and Manufacturing Sector industries
- Now covers about 77 percent of the Service Sector economy

# FACTS ABOUT THE PPI

---

- Covers more than 600 NAICS industries
- Includes over 17,000 sampled firms
- Tracks prices for over 60,000 unique goods and services
- About 10K indexes published monthly
  - ▶ Industry—made in one producing industry
  - ▶ Commodity--identical product produced in any industry

# MAIN USES OF PPIS

---

- Macroeconomic indicator (economic policy, foreshadow consumer inflation)
- Deflator of national income accounts (GDP) and other time series data (productivity)
- Contract escalation
- Inventory valuation (LIFO)
- Ad-valorem taxation

# PPI THEORETICAL MODEL

---

- Fixed-input output price index (FIOPI)
- Assumes fixed quantity, quality, and type of inputs
  - ▶ Labor
  - ▶ Capital
  - ▶ Technology

# PPI THEORETICAL MODEL

---

- When factors of production are held constant, the revenue of a firm responds only to changes in its output prices
- Functional form:  $R(P, i, T)$ 
  - ▶  $R$ =revenue of the firm
  - ▶  $P$ =output prices
  - ▶  $i$ =inputs (capital, labor, materials)
  - ▶  $T$ =state of technology

# PPI INDEX CALCULATION

---

- PPI uses a 'modified' Laspeyres formula
- Where,
  - ▶  $I_t$  is the price index in the current period;
  - ▶  $P_o$  is the price of a commodity in the comparison period;
  - ▶  $P_t$  is the current price of the commodity; and
  - ▶  $Q_a$  represents the quantity shipped during the weight-base period.

$$I_t = (\sum Q_a P_t / \sum Q_a P_o) \times 100$$

# INDEX WEIGHTING

---

- First stage computation (narrowly-defined product lines)
  - ▶ Items are weighted by the establishment's revenue for the product line
- Second stage computation
  - ▶ Indexes for products lines are aggregated
  - ▶ Weighted primarily by shipment values from Economic Census (collected every 5 years)

# Industry 334210

## At-a-Glance

| Product Code | Title                                         | 2012 VOS (000) | %   |
|--------------|-----------------------------------------------|----------------|-----|
| 334210       | Telephone apparatus mfg                       | 6,864,034      | 100 |
| 3342101      | Telephone switching and switchboard equipment | 689,372        | 10  |
| 3342104      | Carrier line equipment & non-consumer modems  | 2,630,897      | 38  |
| 3342107      | Wireline voice & data network equipment       | 3,543,765      | 52  |

Value of Shipments, 2012 Economic Census

# Industry 334220

## At-a-glance

| Product Code | Title                                               | 2007 VOS (000) | %   |
|--------------|-----------------------------------------------------|----------------|-----|
| 334220       | Broadcast and wireless communications equipment mfg | 24,681,689     | 100 |
| 3342202      | Broadcast, studio, and related electronic equipment | 2,633,202      | 11  |
| 3342203      | Wireless networking equipment                       | 2,174,265      | 9   |
| 3342205      | Radio station equipment                             | 9,343,488      | 38  |
| 3342209      | Other communications systems and equipment          | 10,530,735     | 43  |

Value of Shipments, 2012 Economic Census

# SAMPLING PROCESS

---

- Sample by NAICS industry classification
- Business register (universe) from Unemployment Insurance System
- Probability of selection is based on employment size (proxy for output)
- Rotate samples on average 8 years, more frequently for industries with high technological change

# DATA COLLECTION PROCESS

---

- Initiation (one-time)
  - ▶ BLS regional staff visit sampled establishments to solicit cooperation
  - ▶ Select products for the index
  - ▶ Identify price-determining characteristics
- Repricing (monthly)
  - ▶ Respondents submit price updates
  - ▶ Washington staff evaluates microdata

# ADJUSTING FOR PRODUCT CHANGE

---

- Aim is to remove effect of product change
- Index movement must derive from changes in price, not product attributes
- Constant quality
- Maintain fidelity to FIOPI model—inputs, technology, etc. are fixed

# ADJUSTMENT METHODS

---

Techniques used to account for product change:

- Direct Comparison
- Explicit Quality Adjustment
- Overlap Method (implicit)
- Econometric modeling (hedonic models)

# ADJUSTMENT METHODS: Direct Comparison

---

- Product change is minor
- No change to production cost
- E.g., blue dress replaced by red dress
- Price for new product is directly compared with price for previously specified product
- Index reflects entire price difference

# ADJUSTMENT METHODS: Explicit Quality Adjustment

---

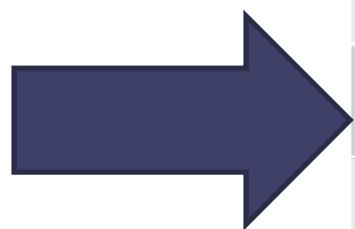
- Change in product *and* production cost
- E.g., new model year for motor vehicle
- Difference in production cost is assumed to be the quality change
- Respondent must provide production cost differential
- Index shows 'real' change, not nominal

# Explicit Quality Adjustment Example

---

Base price of a new car increases from \$20000 to \$21000 in the new model-year.

But...


- \$800 of that increase is due to extra product cost associated with new safety equipment
- Consequently, the “pure” price change is only \$200
- Price inflation is 1%, not 5%  
 $(200/20000*100)=1.00$

# ADJUSTMENT METHODS: Overlap Comparison

---

- Respondent cannot provide data needed to perform explicit quality adjustment, or
- Products are too dissimilar for comparison
- Quality change accounts for entire difference in price during the 'overlap' month when PPI observes prices for both old and new products
- Index follows only the new item after the overlap month

# Overlap Comparison Example



| Month | Old Model Price | New Model Price | Index Δ |
|-------|-----------------|-----------------|---------|
| March | 1000            |                 |         |
| April | 1050            |                 | 5%      |
| May   | 1000            | 2000            | (4.8%)  |
| June  | Discontinued    | 2200            | 10%     |
| July  |                 | 2200            | 0       |

# ADJUSTMENT METHODS: Overlap Comparison

---

Overlap comparison—continued

- Commonly used for telecom equipment and other complex product systems with bundled components
- Potential for upward bias in the index if quality improvements are understated
- Our challenge is to assign an appropriate value to the quality change

# ADJUSTMENT METHODS: Hedonic regression models

---

- Alternative to resource cost method for products with rapid tech changes
- Determines relationships between a product's characteristics (independent variables) and its price
- Used for computers and servers
  - ▶ CPUs, memory, hard drive capacity, screen size, OS, warranty, graphics, etc.

# ADJUSTMENT METHODS: Hedonic regression models

---

Regression quantifies the functional relationship between characteristics and a product's price

- ▶ Price is dependent variable
- ▶ Characteristics are explanatory variables

$$Price = a + b_1x_1 + \cdots + b_kx_k + e$$

# ADJUSTMENT METHODS: Hedonic regression models

---

- Why doesn't BLS apply hedonics more broadly? Like telecom equipment?
  - ▶ Resource constraints (staff, cost of secondary source data)
  - ▶ Appropriate and timely data sources
  - ▶ Need sufficient sample size for modeling
  - ▶ Telecom products more diversified than computers

# FUTURE WORK

---

- Statistical machine learning techniques
  - ▶ Select model characteristics for Microprocessors (2018)
  - ▶ Using time-dummy variable
- Ongoing research in using out-of-sample cross-validation techniques
  - ▶ Network switches (Adams, Klayman)
- Hedonic model for Broadband services

# FINAL THOUGHTS

---

- Measuring price change for high tech products presents unique challenges
- BLS benefits from external input
  - ▶ Respondents
  - ▶ Industry experts
  - ▶ Academia
  - ▶ Data users

# Contact Information

---

**Vincent Russo**

Chief, Section of Durable Goods  
Producer Price Index

*[www.bls.gov/ppi](http://www.bls.gov/ppi)*

202-691-7726

[russo.vincent@bls.gov](mailto:russo.vincent@bls.gov)